An artificial processivity clamp made with streptavidin facilitates oriented attachment of polymerase–DNA complexes to surfaces
نویسندگان
چکیده
Single molecule analysis of individual enzymes can require oriented immobilization of the subject molecules on a detection surface. As part of a technology development project for single molecule DNA sequencing, we faced the multiple challenges of immobilizing both a DNA polymerase and its DNA template together in an active, stable complex capable of highly processive DNA synthesis on a nonstick surface. Here, we report the genetic modification of the archaeal DNA polymerase 9 degrees N in which two biotinylated peptide 'legs' are inserted at positions flanking the DNA-binding cleft. Streptavidin binding on either side of the cleft both traps the DNA template in the polymerase and orients the complex on a biotinylated surface. We present evidence that purified polymerase-DNA-streptavidin complexes are active both in solution and immobilized on a surface. Processivity is improved from <20 nt in the unmodified polymerase to several thousand nucleotides in the engineered complexes. High-molecular weight DNA synthesized by immobilized complexes is observed moving above the surface even as it remains tethered to the polymerase. Pre-formed polymerase-DNA-streptavidin complexes can be stored frozen and subsequently thawed without dissociation or loss of activity, making them convenient for use in single molecule analysis.
منابع مشابه
Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis.
Translesion synthesis (TLS) by Y-family DNA polymerases alleviates replication stalling at DNA damage. Ring-shaped processivity clamps play a critical but ill-defined role in mediating exchange between Y-family and replicative polymerases during TLS. By reconstituting TLS at the single-molecule level, we show that the Escherichia coli β clamp can simultaneously bind the replicative polymerase (...
متن کاملMechanism of polymerase collision release from sliding clamps on the lagging strand.
Replicative polymerases are tethered to DNA by sliding clamps for processive DNA synthesis. Despite attachment to a sliding clamp, the polymerase on the lagging strand must cycle on and off DNA for each Okazaki fragment. In the 'collision release' model, the lagging strand polymerase collides with the 5' terminus of an earlier completed fragment, which triggers it to release from DNA and from t...
متن کاملE. coli DNA replication in the absence of free β clamps.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-str...
متن کاملSlow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells
The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use...
متن کاملElectron Microscopic Single Particle Analysis of the Clamp Loading Complex from Pyrococcus furiosus
Ring-shaped sliding clamps and clamp loader ATPases are essential factors for rapid and accurate DNA replication. The clamp ring is once opened and resealed at the primer-template junctions by ATP-fueled clamp loader function. Processivity of DNA polymerase is conferred by attachment to the clamp loaded onto DNA. In eukarya and archaea, the hetero-pentemeric replication factor C (RFC) and the p...
متن کامل